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Preface

.1/4

The language oe numbers,,like any_ language, has its own alphabet.
In the language of nuMbers that is now used virtually worldwide, the
alphabet consists of ten digits, 0 through 9. This languape is the decimal
.number system. But this language has not always beenksed univerRily.
From a purely mathematical point of view, the decimal system has no
inherent advantages over other poYsible number systems; its popularity
is dtie not to mathematical principle, but to a Set of historical and
biological factors.

In recent times the deciinal system has received serious competition
from the binary and ternary.systems, which are 't preferred" hey modern
computers.

In this pamphlet we will discuss the origin, properties, and applica-
tions of various number gystems.,The reader need not be familiar with
mathematics beyond that covered in the high scpool curriculum.

TwOsections (9 and 11) have been added to the second edition, and
several minor corrections have been made.,

t.

vii



1. Round and Uarounded Numbers

:`,4 man about 49 years old went out for a stroll, walked dovrn the
street for about 196 meters, and went into a store; he bought 2 dozen
eggs,there and then continued walking... ." Doesn't that sound a little
strangerWhen we measure something approximately, such as distance
or someone's age, wc always use round numbers and ordinarily sai.y
" 200 meters," "50-year-old man," and the like. It is simpler to operate
with .round numbers: They are easier to remember, and arithmetical
computationt are easier to perform on them. For.example,.no one has
trouble multiplying 100 by 200 in- his head, but multiplying two un-
reun three:digit numbers, such as 147 and 343, is so difficult that
almos no one can do it without pencil and paper. (

1 king of round numbers, we do not normally realize that the
divisiorof numbers into "round" and " unrounded" is dependent on
the wa4 in Which we are writing the nuhiber or, 4s we nsuallisay, which
number system we are using. In investigating this matter, let us first,
examine-the. d(cimal number system, which we all use. In this system
every positive integer'(whole number) is represented in the form of a
sum of ones, teas, hundreds, so on; that is, in the form of a,sum of
powers of 10 with coefficients which can assume the values 0 through 9.
For example, the notation 2548 denotes the number consisting of 8
ones, 4 tens, 5 hundreds, and 2 thousands; so that 2548 i§ap abbreviation
of the expression

However, we could, with the same success, represent every rwrAber in

the form of a combination of powers, not of the number 10, blit of any
other positive integer (except 1); for example, the number 7. In this
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2 \Round and Unrounded Numbers

system, the so-called\ heptary numbçr system or the number system With
base seven, we wonid make calct1ations from 0' to 6 in ttairusual
maither, but we would take the nu ber 7 as a unit of the next order.
In our new heptary number system this number is naturally designated

10

(a unit of the second order). So that wc do not confuserthis designation
with the deciinal number 10, we attach the subscript 7, so that for seven
we write

(10)7 .

Units in the succeeding places serve to denote the numbers 72, 73, and
SQ forth. They are designated

(100)7., (1000)7 , etc.

We can represent any positive integer by combinations of powers-of
seven; that is, any positive integer can be expressed in the form

ak-7k + ak_a-7k-' + - + a.7 + ao,

where each of the coefficients ao, a1,. ak can assume any whole value
from 0 to 6. Just as in /he decimal system, it is natural to drop the
writing of the powers of the base and to write the numberoin the for,m

(aka k _ 1. (21(20)7 ,

again using the subscript to indicate the base of the number system
lb -that we are using --in this case, 7.

Let us look again at our e?tample. The decimal ntitpber 2548 can be
represented as

1.74 + 0.73 -f. 72*+0.7 0 ,

or, using our notation, as

Thus,

(10300),

(2548)io (10300)7 .



4OrIgiM. of the Decimal Number System

We note pat round numbers in the new heptary number sysiem will
be completely different from round numbers in the d5cinia1 system.
Foibexample,

(147)io '2' (300)7,
('343)20 = (1000)7

since 147 Z3.7? and.343 73); at the same fime,

(100)10 - (202)7-,
(500)20 (13P).7 ,

and so fctitt. Throrefore, in baie seven, multip1yine(147)10 and (343)20
in your head i simpler than multiplYing (100)10 by (00)0. If we used
the base-seven system,'an age of 49 years (and not 50) woula4indoubted-
ly bettalan as "rounded data," and if we said ".9$ meters" or "196

-*eters," it would naturally be taken as, an estimate by sight (since
(98)10 = (200)7 and (196),0 = (400)7 are round numbers in b:ase seven).
We would count objects .by sevens rather than by tens; and so on.
In short, if the base seven system were generally accepted, the sentence
with which we began would surprise no one.

However, the base seven system is not widely usedtand can in no way
compete with the decimal system, which is used everywhere. What is the
reason for this?

2. The Origin of the Decimal Number System'

Why does the number 10 play such a privileged role? Someone far
oved from these quetions would probably anlwer without thinkidg,

Ihs easy to work with the number 10kis% round number; it is easyt

to multiply by any number; ancti, therefore, it is easy to cd'unt by tens,
- hundreds, hnd so on." Buetve have ;already seen that the situation is

actually reversed: The nnmber 10 is round only because it is nsed as the
base for the number system. In thetransition to another number system,
say the heptary,S9stem (where ten is written (13)7), the 't roundness" of
10 disappears.

. The reasons why the deimal system has had such general acceptance
are not at all mathemjtical. The ten fingers of two hands were man's
first mechariism for counting. It is convenient to ci2unt from one to ten
On ,the fingers. After counting to ten, completely using up our.natural
"counting apparatus," it is natural to take the number 10 as a new,
larger unit (a unit of the negt higher o r). Ten tens comprise a unit

k

o
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. 4 Other Number Syztems and Their Origins
*

of the third order,'and so on. Thus, it is because of man's ten-fingered
-.. -counting that the dec:imal system, which nOw seems- self-explanatory,

originated.

3. Other Snmber Systerits and Their 'Origins

The decimal system did not always occupy the dominant position.
In various historical periods many peoples useid, number systems other

than the decima M one time,-for example,
use of the °decimal system &as rather
widespread. Its origin is '.also uMoUbtedly
connected ith counting on the fingers. The
four fingt of the hand (excluding the thumb)
have a total of 12 phalanges (t§. 1), so that
by usin§ the thumb to count off 'these
phidanges in turn, a petson could count from
I to 12. Then 12 is taken as a unit of the nixt
order, dnd so forth. The.duodecimal system
has survived iilanguage,to this day: Instead
of saying twelve ','rwe often say "a *dozen?'
Many objects (knives, forks, plates, handker-
chiefs, and the like) are more often counted

by dozens than by tens. (Recall, for example, that a service is, as a rule,
for 6 or 12? and much,less often for 5 or 10.) Even now the Word "gross"
is occasionally usedl_ meaning "a dozen dozens" (that is, a.unit of the
third order in4the dbodecimal system), and several decades ,no it was
widely used, especially in tteworld orcommerce. A dozen gross was
called a "mass," but now this meaning of the word "mass" is known
to few.'

The English have unquestiona-ble remnants of the duodecimal system
in their system of measures (for example, lIfoot = 12 inches) and in
their monetarisystem Where 1 shilling used to equal 12 pence._

Let us remark that from a. mathematical point orbiew the duo-
decimal system would have several advantages over the decimal system
in that the number,12 is divisible by 2, 3, 4, and 6, while 10 is divisible
only by 2 and 5; in general, a large stock of divisors of the base of the
number system assures certain convenacces in the use of that system.
We shall return to this question in sectign 7,, when we discuss testi for
divisibility.

1. However, it is possibly the source of such common expressions as a "mass
of men" (compare it with the expression "a thouiand men").

1
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Other Number Systems aqd Their Origins . 5(s

In ancient Bal2iilon, where civililation and mathematics %Nero rather'
, advanced, a highly complex base, sixty system was used. Historians
differ in their explanations of,how such a system arose. One of the
hypotheses, though it is not particularly believable, states that there
was,a mingling of two tribes, one of which used the base six system and
the other the dicirnal system. The base sixty system then arose as a
gbmprornise between,these two systems.

'. Anloiliefhypothesis is based on the Babylonian calculation orthe

40) year. Although Babylonian astronomy was sufficientlyadvanteirn that-
the lengtbeaLthe year coula be calculated,exactly, the Babylonians
fciund it conyenient to designate a period of twelve thirty-day months
as a" year," with an extra month added to every sixth year (except for
occasional corrections). A year of 360 days naturally leads to the

.ntimber sixty, since 360 is six times sixty. 1i lias been suggested, however,
that the convenience of. the 366-day year is itself a result of the Baby-
lonian use of the sexagesithal system;Although the .origin oC the sexa-
gesimal system remains obscure, its existence and widespread use in
pabylon is well established. This system, like the duodecimal, survives
to ,a certain extent in our time (for example, in the division of the hour
into 60 minutes and the minute into 60 seconds, and in the analogous
system of measuring angles: 1 degree --.. 60 minutes, 1 minute = 60
seconds). On the whole, however, tile BalCylonian system, although it
did not require the use of sixty different " digits," is rather cumbersome
and less convenient than the 'decimal system.

<7- According to ifie evidence of Stanley, the enlorer of Africa, in a
number of African tribes the base five (quinary) system of counting is

. 'widely used. The connection of this system with the structure of the
human hahd is clear enough.

The Aztecs anethe Mai/aspeoples wlio lived for 'many centuries
in wide areas of the Amerietacontinent and who developed a highly

leadvanced civilization which was almost completely destro ed by the
Spanish conquistadors in the iixteenth and seventeenth nturies
used the' base twenty' system. The same base twenty systentdPwas used
bY the Celts, who lived in Western Euiope beginning,in 2000 B.C. Some
traces of the Celts' base tweqy system remain in the French language
of today. For example, "eigaly".in French is quatre-virit----literally
" four -twenties." The number 24 also used to occur in the French..
monetary system: The basic monetary unitthe francwas divided
into 20,sous.

Of the four systems of counting cited aboye(the duokecimal, quinary,
sexhgesimal, and base twenty), which, along with the decimal, have
played an appreciable role in the development of human civilization,

1 0



I.

6 Positional and Nonpositional Systems ,

all (except the sexagesimal, whose origin is unclear) are connected in
some way with counting on the fingers (or on the fingers and toes);
that is, like the .decifnal system, ihey undoubtedly liave an "ana-
tothical" origin. _t

As the aboye examples show (their number could,have been.en-
ldrged), numerous.traces of these systems of counting 'have INen
_served in our time in the languages 'of many peoples, in monetary.
systettis, and in systems of *measure. However, in notation and in
calculation, We always use the decimal system. AS lb

4 Positional and Nonpositional

All t e systetps of counting whieb. we discussed above are based on-
one general prinyiple. Some number pi's chosenthe base of the ':
number systemand every number /V. is:repcesented in the form o 4
combinations of it; powers with coefficients seles d from 0 to p
that is,. in the form -s

0

akilk ak-lpk-1 4, +pip. + at).
.

Ther4he numSer is written in the shortenedefo'fin

(akak,.. .

In this notation.the value.of each digit depends on the pla hat the
digit occupies. For example, in the number.222, two occur le times.
But the first digit from' the right repfesents two units, the second from
the righttwo tens (twenty), and the third--two hundreds. (Here we
have the decimal system in mind. If we used another number-system,

-sayith base p, these three twos would represent the values of 2, 2p,
and .2p2, respectively.) Number systems constructed in this way a
called positional. . .

Other number systems existnonpositional number systems con-
structed on different principles. A well-known example of such a system
is the Roman numeral system. In that system there are several different
basic symbols;, the unit I (one), V (five), X (ten), L (fifty), C (hundred), .
and so onand every number is represented as a combination of these
symbols. For example, in this system the number 88 is

r I

LXXXVIII.

In this system the meaning of aitymbol does not depend on the place tn
which it stands, except when a letter of smaller value is placed to the



Arithmetic Operati in Various Number Systems 7

left of one with larger value. n.that case, the position of the letters is
important. For example, the xpression IV denotes the number four,
while VI denotes the number six. In general, though, a Ovenietter will "..
denote the same value regardless orplacement; in the reptaentation of
the number 88 above, the symbol X occurs three times, each tithe de-

.
noting the same valueten units. - . -

We often er}counter Rprnan numerals todaypn clock faces, Tor
exa e. they are not Used in mathematical practice, however. Posi-
tidn terns are more convenient because they allow us to represent
large nuthbers using atively few symbols. A more important advan-

. .
tage of a positional 's stem is the simpliCity.of perfoiming arithmetical
operati"ons on numbers written in siuch a system. (Try, for comparison,
to multiply two thrie-digit numbers written in Roman numerals.)

415 From now on we shall consider only positional systems.

5. 'Arithmetic Operations in Varidus Number Systems1

For mimbers Written in the decimal syjtem, we use a "columnwik"
method for addition and multiplication, and a "diagonal" method for

Adivision: These rules are completely applicable to numbers written irt
any pbsitional system.

Consider addition. In the decimal 'system, as well as in any other
system, we tegin by adding the units, filen go to the next place, and so
on, until we reach the hyiest available place. We must remember that
every time the surf) in a preceding place has a result greater than or
equal to' the base of the number system in which it is written, we must
carry over to the next place. For example,

4

(1) (23651)8
+ (17043)8

(42714)8

(2) ( 423)6
(1341)6

+ ( 521)6

(3125)6

A

We now turn to multiplication. For thetsake of definiteness, we choose
a specific system, say thehexary (base six). The basis for multiplication
of any two numbers' is a multiplication table that determines the



8 Arithmetic Operations in Vartods Number Sy.stems

product of any two nuMbers smaller than the base of the system. It is
not hard' to verify that the multiplication table for base six looks like

.

t

MI 0
0

11111111111111100
111111111111111E
EMI

0 0 .

1° CM
RI 0

II
111 0 II ga 2° 13
ill ° ME

° 11111121111111:11

2° Ellei
la

Here eVery square contains the product'of the numbers of the row ana
column on whose intersection the square lies, with all numbers written
in base six (we have,omitted the subscripts in order to make the table
more compact).

Using this table, it is easy to multiply by colunins numbers codtaining
.any number of places. For exarenple,

(52)6
x (245)6

(3124)6

(23345
(1144)6

(145244)0

Dividing "diagonally " is also possible in any number system. Con-
sider a problim like the following:

The solution is

Divide (120101)3 by (102)3 .

(120101)3 1(102)3

(102)3 (1101)3'

(111)3
(102)3

(201)3
(102)3

(22)3

di

"MP

.e1



Translating Numbers from One Syst lQAnother s

(Write thp divisor, dividend, quotient, an remaindet in the dec4thal
system and check the accuracy of the

Problem 1. The following half-wr ten computation was fOuthron
awe blackboard: 5

+ 1-642

42423

Find out in what num r system the addends and the sum AVere written.

.Answer. Base se n.

Problem 2. en we asked a teacher how 'many pupils were in his
dlass;The a ered, "One hundred children-24, hoys and 32 girls."'

a At firsty answer 'astonished us, but thedwe'realized that the teacher
was,silnply using a nondecimal system. What system did he have in
mi-Ad? 0

The solutioo to thisprohlem is Awl complicated. Let x be the b
of the humber .pysItm we are setting. Then the teacher's words mEan

;that sipils, of whorn 2x + 4 afe boys and 3x + 2 are gir s.

ter

yielding

2x + + 3x + 2 = x2,

x2 5x 6 = 0,

(x 6)(x + 1) = 0 ,

or, by the quadratic formula,

= 5 V(25 + 24) 5 +
x

2 2 '

either method yields
41.

x, 6 , x2 1 .

Since I cannot be the base of a number system, x = 6. Thus, the
teacher's answer wai in the base six sys'fem, and he had 36 pupils

.. 16 boys and 20 girls.

6. Translating Numbers from One System to Another

How do we translate a number written in one system, say the decimal,
into another system, say the base seven system? We already know that
to write a number A in base seven is to represent it as the sum:

A = ak7k + akl_17k 1\+ + a1 7 + ao
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b9r; frarn °tit System to Another

rder o find the representation of the number A to the
d tIffitid the coefficients at), ak, eacji of whieh

it be eeil 0 and 6,,ifichisive. We divide,our number A
e remainder in this division is clearly equal to ao,
ation of A, all the terms except the last are evenly

n let us take the quotient obtained from dividing
7, and again divide it 1.13, 7. This newly obtained re-
qual to al. We continue this process and find all the
ak in the base/seven representation of. A, in the form

mainders obt4ned by dividing it repeatedjy by 7, as
e. Consider,.fo example, the number .'

. T
re

.1T
A.by
be

(3287);0 .

7, we get a q otient of 469 and a remainder of 4. 'Conse-
tçn to tlie ba 7, the number 3287 has its last digit equal

next-tor-la t digit, we divide our quotient 469 again by
et qtiotient of 67 and a remainder of 0. Consequently, the
ast digit of theinumber 3287 to the base 7 is 0. Further, we
7 b 7, obtaining 9 with a remainder of 4. This remainder of 4

c third digit.from the end of 3287 written to the base seven.
divide the last quotient 9 by' r, getting a remainder of 2

t of 1. The remainder of 2 gives us the fourth digit from
te sired notation, and the quotient of 1 (which owe can no

by 7) represents the fifth digit- from the end (the first

D idisi 4,
kivq ently Wri
0. T fin

7. We
next-to
diVide
eOrese ts t
i .ally, we
nd a quoti
heend in

neer ciivi
Thus

\

'ight si

*;

(3287)io = (12404)7 .

of this equation is an abbreviation of the expression

174 + 2.7" 4-72 4- 0.7 + 4,

jdS aS (3287) is an abbreviation of the expression

310" + 2.102' +.8.10 + 7.

'The omputations that vvr used for translating from the decimal repre-
sentation of the number 3287, into its repre.sentation to the base seven
arc conveniently arranged as follows:

3287 7

4 469

0 67

'4

r,

'
f

2 1

z



' Translating Numbers from One System to Another 11

...; Everything that we have said above'clearzly applies not only to. the
bath seven system, rItut Ao any other such system. A general rifle for

':Qbtaiping the represesittion of some number A in the number system
'with hiLke p can be form dted in the following way: Divide the number
A liy p in integers; t e ainder thus obtained will be the last digit of
the base p representa n of the number A.. Dividing the quotient
obtained from this division again by p leavei us a second remainder;
this will be the digit that occupies the next-to-last place; and s/o foith.
The process continues until we obtain a quotient smaller than ; file
base of the system. That quotient is the digit that occupies the ighest
place.

, Let Us consider dne ma* example. The problem is to write up num-
,ber WO in binary notation. We obtain:

1

that is,

100 2

0502
0252

1 12 2 `.

0 6 2

0 3 2

(100)12 --- (1100100)2 .

One constantly encounters the problem of translating numbers from
the decimal to the binary system when working with computers, a
subject about which we shall haye more to say later.

In the examples we have considered, the original number system
has been the decimal system. We can, however, translate numbers
from any given system to any other by the same mcans. To do so, wc
need only note that the process a successive divisions carried out in the
above examples can also be carrid out in any base in which..we are
given the original number representation.

A

Problem. Let us assume we have a scale (with two pans) and weights
of I gram, 3 grams, 9 grams, 27 grams, and so on (one dbject of each
weight). Using only this equipment, is it possible to weigh any mass to
within an accuracy Qf one gram? The answer is yes. We shall present

a 4.

1 (9

, a



.;

12 Translating Numbers from One System to Another

the solution lee, relying on the representalion of positive integers in
the ternary system. Suppose the pbject that we wish to weigh weighs A
grams (taking A as'an integer). We can write the number A in the
ternary system as

4.

that is,

A -aiao)o,

+

where e 'coefficients ao, a1, . a, can sasume values of 0, 1, or.2.
possible, however, to write each numbe,r in the ternary'system -

somewhat differently, so as to use the digits.0, I, and I (instead o$),
1, and 2). We utilize such a system as follows: We traaate the number
A from the decimal to the ternary syste,m; using the method of succes-
sive divisions that we described earlier, except that every title we
diiride by 3 and get a remainder oT 2, we will increase the quotient by 1,
leaving a remainder of 1.
1 As a result, werbtain the number A ,in the.fprm of a sum:

A =470,z, 3n bm_13""1 + + b13'+ bo

where each of the ;coefficients b,, bm-1, 1)0 ean assume a value of
0, 1, or I. For example, the number 100, which, in the usual ternary
notation, would have been 10201, would have the form 11( 1)01 in

this variation, since

(100)10 = (10201)3 = 34 + 3' 32. + 1 .

, Now, we put the mass weighing A gram on the first pan of the scale,
and we put a weight of one gram on the second pan if ba = 1, and on
the first pan if bp = 1. (If ho = 0, we do not use the first weight.) Con-
tinuing, we put the 3 gram weight on the second pan jib, = 1, and on
the first if b, 1, and so on. It is easy to see that if we arrange the
weights in this manner we can balance the weight 41. And so, with the
help of weights of mass I, 3, 9, a911 so on, it is possible to balance any
integral mass on the scales. If the weight of the mass is unknown, we
choose a distribution of weights that balances the mass and thus

'determines the weight.

1 9



Tests for Divisibility 13

I.& us clarify our discussion with an example. Suppose we have a
mass weighing 200 grams. 'translating 200 into ternary notation in the
usual way, we obtain

4200 *3

2 66 3

0 22 3

1 7 3

1 2
Consequently,1/4

,

or, in greater d

tDO = 23i + 1-33 + 1-.32 + 0.3 + 2. :

If 200 is translated into ternary notationof the second type, usingl
..

and not 2, we obtain

= (21102)3 ,

that is,

20= 135 1.3* + 1.38 + 1.32 + 1

(The validity of this last.equality is easily verified by ect calc tion.)
So, in order to balance a mass of 206 grams place on a pa f The

scales, we need to put weights of 1 gram and 81 irams on the same pan
and weights of 3, 9, 27, and 243 grams on the other pan.

7. Teas far Divisibility

There are siniple tests that permit us to deterMine whether a given
number is divisible, for example, by 3, 5, 9, and so forth. Let us recall
those tests:

Z.'()

de

A
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1. Test ,of diviiibility by 3. Anumber is divisible by 3 if and only if
the sum of its digiti is divisible' by 3. ForIxample, the number 257802.
(in which the sum of digits is 2 + 5 + 7 + 8 + 0 + 2 = 24) is divis-
ible by 3, but the number '125831 (in which the sum of digit§ is 20) iS not
divisible by 3.-

2. Test of divisibility by 5. A num* is divisible by 5 if and only if
'its last digit is eitfier 0 or 5 (that is, if and only if 5 divides the number
of uniXvin the last place).

t of divisibility by 2. This test is analogous to the immediately
preceding one: A, number is divisible by 2 if and only if 2 divides the
number of units in the last (place.

. 4. Test ofdiVisibility by 9. This is analogous to the test of divisibility.
by 3: A number is divisible by 9 if and only if the sum of its digits is
divisge by 9.

Proof of the validity of these tests presents no difficulty. Let u.4 exam-
inet for example, the test-of divisibility by 3. ItAs based on the fact lhat
the units in each place in ti.he decimal system (that is, the numbers 1,
10, 100 1000, and so on) leave a 'remainder of 1 when divided by 3.
Therefore, since every nutnber

a1ao

that is, every number

10

a 105 + a10ft-1 + + a1,10-+ adv,

can be written in the form 4

(ai, + a, + + + ac.)+
[a(10" 1) + a,(10"1 1) + + a1(10 1) + ao(1 11),

. .

and since (10k 1) for k = 0, . . n is divisible by 3, we may write our
number in the form

(a + a, + + al + ao) + B

where B is evenly divisible by 3. It is clear, then, that the number

an.103 a_1.103- + + a,. 10 + ao

is divisible by 3 if and only Hi 3 divides the number

+ a.1 + + a, + a
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For cxample, the decimal number 4851 can be written

r
4851 = 41000 + 8.100 + 5. 10 + 1

= 4.(999 + 1) + 8.(9 + 1) + + 1) + r
4 + 8 + 5 + 1 + (4.999 +199 + '5,9)
4 + 8 + 5 + 1 + B,

15

where B is divisible by 3. Thus, since 3 divides 4 + 8 + 5+' 1 = 18,
3 must divide 4851.
/The test of divisibility\by 5 is-based on the fact that the nuniher 10

7 the ibase of the number`sys4mis divisible by 5; .therefore, all the
powers of ten from the fir;t.on are divisible by 5. °Therefore, ,if a number
is to be divisible by 5, its last digit must yield a remainder of O on divi-
sion by 5. The test for divisibility by 2 has the sami liosis: A number is
even if and only if its last digit is even.

The test of 'divisibility by 9, like, the test of divisibility by 3, is based
on the fact that every number of the form 10k leaves a remainder of 1
when divided by 9.

From the discussion, it is clear that all these tests arebaied on detimal
representation of integers, andOhat 'they are ,. generally speaking.in-
applicable if we use a different numbei- system. For txample, the
number 86 is-written to the base 8 in the form

(126)8

(since 86 = 82 + 2.8 + 6). The sum of the digits is 9, but 86 is divisible
by neither 3 nor 9.

However, in any positional system it is possiblAta formulate tests fog
divisibility by various numbers. Let us consider a few eZamples.

We shall write numbers in the duodecimal system and formulate, for
that notation, a test for divisibility by 6. Since the number 12the base
of the number system--is divisible by 6, a number written in the duo-
decimal system is dtiOsible by 6 if and only if 6 divides its last digit. (We
have here the same ituation as for divisibility by 2 and by 5 in the
deceirsystem.)

Since the numbers 2, 3, and 4 also divide the number 12, the following
divisibility tests are valid: A number to the baser.12 is divisible by 2, 3,
or 4, respectively if and only if its last digit is divisible by 2, 3, or 4,
respectively.

We leave it to the reader to check the validity or the following divisi-
bility tests in the duodecimal system:
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a. The iumber A = (a.a.-1.. ala0)12 is divisible by 8 if and only if
the number (a1a0),2 (formed by the last two digits of A) is divisible by 8.
(Hint: 8 is a divisor.oc1r = 144, so that all the powers of 12 from the,-
second on are divisible by 8.)

b. The numbtr A = (anan -1 --1.a1a0)12 is divisible by 9 if and only
if the number (a1a0)12 (formed by the last two digits OA) is,clivisible by
9. (Hint: 9 divides 144.) k

c. The number A = (a,saf-1. ala0)12 is divis(ble by 11 if and only
if the sum of its -digits Ohe number + a + +' + ao) s divis-
ible by 11. (Hint: 124 .1 is divisible by 11 for k = 0, . . since
12k 1 = 11.12k-1 + 11.12k-2 +.+ 1112,+ 11.)

Lt ui ecinsider two more problems connected with the divisibility of
numbers. ,

Problem 1. The/number (3430), (written in base p) is divisible by 7.
What is p, and what is the decimal representation of the number A if we
know that p-_-_,12? Will the problem's sofution be unique if the con-

,
dition p .12 is not-satisfied?

Solution. Sinee 7 is a prithe number (that is, a number whose only
positive iniegral diVisors are itself and one), it tan be shown that if 7
divides the product ab and 7 does not divide a, then 7 divides b. 'To
applysthis information to the problem, we may write

..(3630) = 3p3 + 6p2 + 3p = 3p(p + 1)2 .

Since 7 does not divide 3, 7 divides p(p + 1)2. Since 7 is a prime number,
divisibility of (p + 1)2 by 7 would imply the divisibility of p + I by 7.
Obviously, 7 cannot divide both p and p + 1. Applying this informa-
tion, we know that 7 must divide either p or p + 1. If p 5_ 12, p thust be
either 6 or 7. However, in base 6, the digit string 3630 is meaningless;
therefore, p = 7. From this it is easy to calculate A = (1344)10. If the
condition p 5_ 12 is not satisfied, p may be any number of the form 7k
or 7k I, where k = 1,2, . . (except for 7.1 1 = 6).

Problem 2. Prove that theinumber

.':ajao)p

that is, the number

an + + + + ao

is divisible by p 1 if and only if p 1 divides-the sum

+ (4_1 + + ai + ao
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(Compare this general problem with the divisibility test for 9 in the
;decimal system and with the divisibility test for 11 in the duodecimal
system.)

8. The Binary System

The smallest integer that can be used as the base of a number system
is 2.jhe binary (base 2) system is or of the very oldest-It is encoun-
tered, although in a very incomplete form, among several Australian
and Polynesian tribes. The convenience pf the system is its extraordinary
simplicity. In the binary system we have only two digits; 0 and 1, and
the number 2 is a unit.of the sec:mid orior. The rules for operations on
binary numbers are very simple. The basic rules for addition are given
by

0 + = 0, 0 + 1 = 1 1 + =

and the mpltipiication table for"the ,binary system has the form
J

ill 0 RI
. . .

III ° III
A slight disadvantage of the binary system arises as a result of the

small size of the bak. This means that writing even moderately large
numbers requires the use of many places. For example, the number 1000
is written in the binary system in the form

- 1111101000 ,

using ten digits. However, this disadvantage is often compensated for by
the convenience of the binary system in modern technology, especially in
the use of computers.

We shall talk about the technological dpplications of the binary
system later, but, for the present, let us consider two problems connected
with binary number notation.

Problem 1. I am thinking of some base 10 integer between 0 and 1000.
Can you find oujegiat the number is, asking no more than ten "yes or
no" questiorTrr This problem is completely solvable.

One possible series of questions automatically leading to success is:

' 0

. .
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First quation: "Is the number you are thinking of evenly divisible by
2?" If the answer is yes, we write down the number zero; if nott we
write down the number one. (In other words, we write dqwn
mainder obtained by dividingthe "secret" number by 2.)

Second question: "pivide the quotient, which you Obtained from the
...first division, by 2. Is it evenly divisible?" Again, if the answer is yes,
we write a zero, and if it is no, we write a one.

Each su=ed$ question will be of the same form, that is, "Pivide
the quotient, whieh was obtained from the previous division, by 2. Is it
evenly divisible?" Each time, we write a zero if the answer isaffirmative
and a one if the answer is negative.

Using this procedure 10 times, we obtain 10 digits, earth of which is
either zero or one. It is easy to see that these digits form the binary
representation of the desired number in %verse order. Actually, our
system of questions reproduces the procedure by which a number is
translated into the binary syscem. The ten questions ve eough because
every number' from-1 to 1000 can be written in binary notation using no
more than ten places (since 1024 = ) f the intended number had .
been written in binary notation in the rst lace, it would have been
clear how our ten questions were functioning: We were actually'asking
whether each of the digits was a zero or a one.

I,et us consider another problem which is closely related to this one.

Problem 2. I have seven tables, each of which contains a chessboard
..f of 64 squares (fig. 2).

In, each square is written a numbArom. 1 to 127. Choose one of
hese nunThers, and tell me in which orthe tables (they are numbered

from 1 to 7) that number is located. I can name the number. How?
Here is the solution to this uncomplicated problem:
Letus write every number from 1 to 127 in binary notation. None of

these representations has more than seven places, since 127 = (1111111)2..
We put a number A in the 'kth table (k = 1, 2, ..., 7) if, in its binary
representation, the kth place f the right has a I, and we do not.write
it there if the kth placeis . ..-tted by a zero. For example, the number
57, which is written in *nary notatiowas

0411001 ,

would he contained in the firm, fourth, fifth, and sixth tables, the
amber I only in the first table, tile number 127 in all of the tables, and
so on. In this way, if we know in which tables a number is contained, we
know its binary representalion. All we need do is translate it into the
decimal system.

e'v

4

a
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The question ;in be reversed: Choose a number from 1 to 127, and
I will tell you in which of the tables in figur'e.2 it is located and in which
it is not. To' answer the question, all we need do is translate the given
itumber into the binary system (with a little practice this is not difficult
to do in your head) and theh simply name those places that are occupied
by a 1.2

The above discussion leaves one unanswered question, however. Why
,are there exa&ly,sixty-four numbers in each table ?"1et us consider table
k (k = 1, 2, .7. , 7) in which we have written all numbers from 1 through
127 which have a one in the kth place from the right. To each of these
numbers, there corresponds a unique number which is derived from the
first by substituting 0 for I in the kth place. This second number, of
course, will not be in table k; yet' it wilt be between 0 and 127 inclusive
(ancl will be zero only*when the original number has I only in the kth
place). Furthermore, all the numbers not in ?able k derived by this
correspondence will be distinct (as is easy to verify); and each number
not in table k can be derived from some number in table k by the corre-
spondence. Thus, if there are n numbers in table k, there must be a I

numbers not in table k (discounting zero, and allowing only numbers
from I through 127), so that the following deduction holds:

n + (n 1) = 127 ;
I = 127 ;

2n = 128 ;
= 64 .

Since this is true for all k = 1,2, ..., 7, there must be exactly 64 num-
bers in each table. ,

9. The Game of Nim

A game called "Nim" was popular in ancient China. It involves
three piles of tones; two players alternate in taking stones from the
piles; in each turn a player can take any nonzero number of stones
from any pile (but only from one). The winner is the one wholakes the

last stone.
Nowadays, more convenient objects are used in place of sto=s--for

example, matckes. The problem lies in clarifying the optimal strategy
for each player.

2. In each of the abbve-rnentioned tables, the numbers are written in order of
increasing size, making the structure of these tables fairly easy to discover. How-
ever, within each of the seven tables, the numbers can be rearranged quite arbi-
trarily, hiding The method by which the tables were constructed.
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The binary 'Item is helpful in solving this problem. Suppbse that
there are a, b, and c matches in the three piles. We write the numbeis
a, b, and c in binary notation:

a a, 2". + 1 + (11.2 + ao
b b.. 2"` +-b,-1211-1 + + b12
c c, 2" + c,_ 2*- 1 + + cl 2 + co .

If necessary, we put zeros in front of the numbers which have fewer
digits. In this way, each of the digits ao, 1)0, co, ., a., b., c, can be
equal to either 0 or 1, with at least one of the digits a., b, and c. (though
not necessarily'all) different from zero. The player who goes first may
replace one of the numbers a, b, or c with any smaller number. Suppose
that he decides to take matches from the first pile, that is, to change the,
number, a. This means that some of thc digits at), al, , a. will be
changed. Analogously, in taking the matches from the second pile, the
player would change at least one of the digits bo, ..., b.; and, taking
matches from the third pile, he would change at least one of the digits
CO, . . Cgs.

Now.consider the sums

a, + b, + + cm+ 2 I - ao + bo + co . (4)

Each of these sums can equal 0, 1, 2, or 3. If at least one of these sums
is odd (that is, equals I or 3), then the player- with the fir4 turn is
assured of victory. In fact, let ak + bk + ck be the first (counting from
the left) of the sums in (*) which are odd. Then at least one of the three
numbers ak, bk, and ck is equal to 1. Assume, without loss of generality,
that ak = I. Then the first player can take from the first pile any
number of matches such that the coefficients a, . . .;ak+, do not
change, ak is equal to 0, and every one of the coefficients ak_
ao can take whatever value (0 or 1) the player desires. Thus, the
player can take a number of matches from the first pile such that all the
sums

ak--1 + bk -1 ck_1, ao + 1)0 +

become even.
In other words, the first player can arrange it sO tfiat after his turn

all the sums in (*) have become even. The second player, in making his
move, cannot help but change the evenness of at-least one of the sums,
since he must change at least one digit in some number, but in only one
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number. This means that after his turn we again have the situation in
which at least one of the sums in (*) is odd. The first player, in his next
move, can again even out all the sums. And so, after every turn of the
first player, all the sums in (*) are even, and after every turn of the second
player, at least onc of these sums is odd. Since the total number of
matches decreases after every turn, we eventually reach the situatioA
where all the sums in (s) are zerothere are no matches left. Since all
sums are even when and only when the first player has just taken his
turn, the first player must have taken the turn that reduced all the sums
to zero, and so he must have taken the last match; he has won.

For example, suppose that initially a = 7, h 6, and c = 2. We
would then write

a (111)2 ;
= (110)3;

c = (010)2 .

The sums of interest would he

a2 + b2 + c2 = 1 + 1 + 0 = 2 ,
al + bl + c, = 1 + 1 + 1 = 3 ,
ao + bo + co = 1 + + = I

The "first" odd sum is al 4 h, + c, 3. The first player may then
decide to draw from the first ji1e. In doing so, he should change a, from
1 to 0. But he must also arr ge for ego + bo + co to be even, so he must

, also change ao from 1 to . The result is the subtraction of (011)2 =
stones from the firspI1, leaving

The sums

a = 4 ON% ;
h = 6 (110)3 ;
e = 2 = (010)3 .

a, + b, + c, 2 ,

al + b, +- c1 =,2,
ao + hp + co 0

41* are then all even. ,

The second player may decide to draw three stones from the first pile
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(it doesn't matter what he decides;-if the first player knows the optimal
strategy, he has no chance). This would leave t

a =.1 = (001)2 ;
b = 6 = (110)2 ;
c = 2 = (O10), ,

a2 + b2 + c2 = 1 ,

+ b, + c1 = ,

ao + bo + Co = 1 .

The first player must then decide to draw from pile two, in order to
change b2 from I to 0 (the only way to even out a, + b2 + c2 without
adding stones). In doing so, he must change 1)0 from 0 to 1, while
leaving b, fixed: In-other words, he must change from (110)2 = 6 to
(011)2 = by drawing 3 stones. This leaves

a = 1 = (01)2 ;
= 3 = (11)2 ;

c = 2 = (10)2 .

Suppose the second player decides to simplify the game by removing the
stone from the first pile (again, it doesn't matter what he decides). This
leaves (omitting the first pile)

and

b = 3 = (11)2 ;
c = 2 = (10)2 ,

b, + c, = 2,
bo + co = 1 .

The first player then removes one stone from the second pile, so that

b c = 2 (10)2 ;
b, + c, = 2 ;
bo + co = 0 .

At this point, the second player will not remove one of the piles, for
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that would mean instant defeat. Instead, he draws'One stone, say from
the last pile, leaving

1.

b = 2 = (10)2 ;
c = 1 (01)2 ;

+c1 = 1 ;
bo + co = I

4.

The first player must chaiige both the first and second places in one of
the numbers; this can be accomplished only by changing b fibm
(10)2 = 2 to (01),2 = I. Then

and the second player must remove one of the stones, after which the
first player removes the other and wins.

If all the sums in (*) arc initiaI4 eien, the first player's first turn
makes at least one of the sums odd, allowing the and player to win

by using the above strategy... ;

Thus, if the optimal strategy is 4nown to both players, numbess a,
b, and c completely determMe the result.

Of course, three numbers that would give the second layer victory
rarely occur, and so in the long run che first player wit do far better
than the second. For example, there are eight ways to divide ten matches

(a + b + c = 10) into three pilei..SeVen of thes1 arrangements determine
victory for the first player, while vnly one favors the second.

At least one important queation is raised, however. Could more
" strategies be_devise51, using number systems to bases other
than 2? For exam0C4 could the ternary system be Used so ihat the first
player's object would be to make the sums'of Corresponding digits all
divisible by 3? Theanswer is no since, when a bise p number system is
used, the " optima17, strategY breaks dawn as soon as the combined
total of the numbei of Oatclies- in .the three piles becomes less than p.
In this situationiit is iMpossible for the first player to arrange for the
sum of thediglti in the *nits' place to be divisible by p (unless two piles
have been exhausted). If,. in addition, not all of the binary sums of interest
wax even, the second player could apply the binary strategy to win.
Such a situation 4u1d occur if the first player, using the terpary
strategy, left exactly one match in each pile after his turn. The remaining
turns of both players would then be determined, and the second player
would draw the last match.

31 ba
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The effectiveness of the binary Isystem in this applicatiOn lies in the
fact that if fewer than two matches remain in all three piles combined,
then only one match remains, and the first player can win simply by
drawing the match.

10. The Binary Cnde and Telegraphy

One of the oldest technical uses of the binary system is the telegraph
code. We write the letters of the alphabet and a space denoted by
46 71, numbering them from 0 tn 26;

ABCDEFGHIJKLM
0 1 2 3 4 5 6 7 8 9 10 11 12 13NOPQR S TUVWX.YZ

14 15 16 17 18 19 20 21 22 23 24 25 26

Each of these numbers (0 through 26) can be written in the binary system
using no more than.five digits, since r 32. We obtain

0 ,0 0 0 0
A 0 '0 0 0 1

B 0 0 0 1 0

Z 1 1 0 0
-

Suppose that we have five conductors joining two points. Then each
five-digit figure representing a unique letter of the alphabet can be sent
from one point to the other using a definite combination of electrical
impulses: Say we let no signal stand for 0 and an impulse on the appro-
priate conductor stand for 1. At the point of reception this combination
of impulses will set into operation a printing apparatus which will print
the letter corresponding to the given combination of impulses (and thus
to the given binary number).

The telegraph is, in principle, a combination of two apparatuses: an
initial mechanism which translates the message into a system 'of im-
pulses to be sent across the connecting lines, and a receiving mechanism
which translates the impulses into a combination of letters via a printing
mechanism.9

3. We have been speaking of two points linked by fivc conductors. However,
We can manage with only one conductor by transmitting each letter as a succession
of five binary.digits (impulse or no impulse).

3
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In this way, the ease of translating binary numbers into a system of
electrical impulses 4eads to aouseful application of the binary system in
telcgraphy.4

11. The Binary SystemA Guardian of Secrets

Telegraph and radio-telegraph provide for fast transfer of in-
formation. However, telegraph messages are easily intercepted, and
sometimes, especially in military matters, information must be made
accessibleonly to the intended recipient of the message. Therefore, we
must resort to coding methods.

We have all, at some time, used codes and conducted "secret corre-
spondences." The simplest type of code is constructed by representing
each letter of the alphabet by some symbol: another letter, a number,
a convenient mark, and so on. Such codes are often important in
detective and mystery stories; for example, Conan Doyle's "The
Adventurer of the Dancing Men" and Jules -Verne's Journey to the
Center of the Earth. Such codes are easily broken.

Any language, including Russian or English, has a definite structure:
Some letters and letter combinations occur often, some less often, and
others (for example, a w following a q in English) not at all. This
structure is independent of the choice of alphabetic symbols, and so it
remains after coding, allowing us to discover the coding system and the
actual message. Even coding systems far more complex than -those of
this type yield their secrets to an experienced decoder.

It becomes necessary, then, to devise a code which cannot be deci-
phered by such simple means. One such code is based on the binary
number system and on a variation of the system of letter representation
we discussed in the last section.

Using the telegraph coded we can represent any message_by a definite
sequence of five-digit amginations of zeros and ones. Suppose we pet
up in advance some absolutely arNtrary sequence of such five-digit
binary numbers. Such a sequence, intnded for coding a text, is called a
scale. We make two copies of the scale, writing it as a combination of
holes in a special paper tape (fig. 3), in which every row across on the
tape contains some five-digit combination, a punched hole representing
a one, and the absence of a hole representing a zero.

4. In addition to the coding system we have constructed, there is a widely
acceptedcoding system called the-Morse code, which also relies on representations
of letters using combinations of two symbolsin this case, dots and dashes. We
shall not discuss the details of the Morse code system here.

0
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Fig.. 3

We keep one copy of the scale and send the other to the person with
whom we have a telegraphic connection. We now combine our message
with the "arbitrarily" prepared scale in the following way: We "com-

,---bine" the first fite-digit number (the first letter) of the message with the
-first number of the scale, the second number of the message with the
second number of the scale, and so on, "adding" in columns under the
titles

0100=0, 100=0+1=1, lel.=0;
that is, without carrying the sum of two units into the next place. The
operation ® is called "addition modulo 2"; clearly, such a method of
combining two binary numbers yields a 0 digit in each place in which
the corresponding digits of the two numbers are equal and a 1 in eitch
place in which they are not. The result of such a combination of the text
and the arbitrary scale can then be transfernd as a sequence of electrical
signals to our addressee. To restore the original message he need only
add the same scale to the text in the manner described above.

The whole process can be described as follows:

1. text e l scale = coded text;
2. coded text 0 scae, = text () scale 0 scale_= text.

It is not hard to see that for the purpose of sending a single message,
this code is no better than the letter representation code of the last sec-
tion; the scale serves only to permute the numbers which are assigned
to our twenty-seven symbols. But when this code is used to send many
different messages (using many different scales), the would-be decoder
is faced with the task of breag a new code with each message, even
though no added hardship islimposed on those who know the code and
its scaling principle. The code is far from "perfect," however, since an
adversary with unlimited resources, even if he never discovered the
scaling principle, could, in theory, break each new code in the same way
as thc letter representation code can be broken.
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This entire process can easilx be made automatic with the attachment
of an apparatus that would perform the operation of Combining message
and scale to the transmitter, along with a similar apparatus to the re-
ceiver. -The telegraph operators serving the line need not even know
such mechanisms are present.

Of course, the binary system is especially convenient here because
each number, 'when " added" to itself, yields a "sum" of zero, making
tee coding and decoding operations identical.

12. A Few Words about Computers

We have been speaking of the use of the binary system in a compara-
tively old province of technology, telegraphy (the first telegraphic

aratuses based on transmission of electrical signals via conductors
appe he 1830s). We shall now consider one of the newest
app ions of the binary systemcomputers. I3ut first we must discuss,
although in very general terms, just what an electronic computer is.

The history of the development of computer technology is very
lengthy and at the same time very short. The first devices designed td
simplify the work of computation appeared long ago. For example,
ordinary calculators were used for accounting purposes over four
thousand years ago. Still, genuine " machine mathematics" arose 'no
more 'than twenty-five years ago, when the first high-speed computers
based on modern electronic technology (radio tubes and later tran-
sistors) appeared. In the short time the technology of computers
achieved striking success. Modern computers work at speeds up to
millions of operations per second; in other words, they perform in one
second as many operations as an experienced human armed with a
desk calculator can perform in several months. These machines have
allowed us to solve problems which are so complex that solutions by
hand would have been out of the question. For example, a modern
computer is capable of solving a system of several hundred simultaneous
linear equations with the same number of unknowns. A human
"computer" armed with a pencil, paper, and desk calculator could
not cope with such a problem in a lifetime.

When computers are mentioned in popular literature, we find ex-
pressions such as " the machine that solves complex equations," "the
machine that plays chess," or " the machine that translates from one
language to another:: This can give the false impression that each such
function solving equations, .playing chess, translating, and the like
is done 'by a specific machine built only for that purpose. However, all
these problems and .more--- both mathematical (solving equations,
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constructing tables of logarithms, and so forth) and nonmathematical
(translating a text or playing ches.$)can be solved by one machine, the
so-calle universal computing machine. Strictly speaking, every such
machin can perform only a very limited number of elementary opera-
tions: jdding and multiplying numbers and storing the results in the
machine's "memory," comparing numbers, choosing the largest or the
smallest of two or more numbers, and the like. However, the solutions
of the most diverse and complicated problems can be reduced to
sequences (possibly very long) of such elementary operations. Such a
sequence of operations is defined by a "program." Thus, variety in the
problems which can be solved by a universal computing machine leads
to variety in the programs fed into this machine.

In doing computatiOns by, hand or by computer, we must agree on
some number system. When working with pencil and paper, we, of
course, use the decimal system to which we are accustomed. However,
the decimal system is hardly suitable for electronic computers. Such
machines have a decided preference for the binary system. We shall now
attempt to find the reasons for this.

13. Why Electronic Machines "Prefer" the Binary System-
/

When we perform a computation by hand, we write the numbers on
paper in pencil or pen. For a machine, however, sorne other method of -,
storing the numbers with which it is operating is needed.

To clarify this problem, consider, for the moment, not a computing
machine, but a far simpler apparatus.. -an ordinary counting device
(electric meter, gas meter, taxi meter, and so on). Every such counter is
composed of several discs, each of which can be situated in one of ten
positions, corresponding to the ,digits from 0 to 9. It is clear, then, that.
an apparatus consisting of k such discs can serve to store one of 10k
different 'numbe.rs, from 0 to 10k 1. Such a counter could very well be
usedtor computation; tfhat is, it could be used not only to store numbers'
but also to perform arithmetical operations.

In general. a counter suited to a number system with base p is a system
of diScs, each of which has p different positions. In particular, the
apparatus with which binary numbers could be stored should contain a
number of objects, each of which would have two possible positions.
It is clear that We need not use discs as the counting apparatus. In
principle, a counter can consist Of any collection of convenient elements,
the only requirement being that each of the elements be able to take on
as many stable conditions as there are units in the base of the number
system being used.
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A counter employing a system of wheels or any other mechanical
apparatus changes its state relatively slowly. The speed with which
modern computers work millions of operations per secondis
possible- only because these machines work electronically rather than
mechanically. Such machines are practically devoid of inertia and,
therefore, can change their state within a time interval of a millionth
of a second.

Electronic elements (vacuum tubes, transistors) typically have two
stable conditions. For example, an electric bulb can be " on" (when
current is passing through it) or " ofT" (when current is not passing
through it). Semiconcluctors, now widely used in computer technology,
operate by the same principle. This property of electronic elements is
the basic reason why the binary system has proved to be the most
cunvenient one for computers.

The input data for solving a problem is usually given in the conven-
tional decimal system. Therefore, so that a machine based on the binary
system can use the data, we must translate it into binary representation,
a language that the machine's arithmetical apparatus can "under-
stand." Such a translation is simple to accomplish automatically, of
course. We also want the results of the computer's computations to be
written in the decimal notation. Therefore, the computer generally
must translate the result from the binary system into the decimal system.,

Computers sometimes use a combined binary-decimal system. In this
system, a number is first written in the ordinary decimal system, and
then each of its digits is represented, using zeros and ones, in the-binary
system. In this manner, the binary-decimal system represents every
number as several groups of zeros and ones. For example, the number

2593

is written ion the binary-decimal system as

0010 0101 1001 0011 .

In comparison, the binary representation of the same number is

101000100001 .

Let us see how a computer based on the binary number system per-
forms arithmetic operations. The basic operation which we should
consider is addition, since multiplication reduces to iterated addition,
subtraction reduces to addition of negative numbers, and, finally,
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division reduces to iterated subtraction. In turn, the addition of multi-
digit numbers reduces to performing the appropriate addition place by
place.

The addition of two binary numbers place by place can be described
as follows.5 Let a be the digit in a given place in the first summand; b,
the digit in the same plaee in the second summand; and c, the digit
which we have to carry from the preceding place (where, we are assum-
ing, the addition has already taken place). To Verform the addition in
the given place is to indicate which digit (0 or 1) needs to be written as
the "sum" and which digit- must be carried to the next place.

denote the digit that must be written in the given place of the sum
-bythe letter s, and the value that we have to carry to the next place by
the letter t. Since each of the quantities a, b, c, .sc and t can take only a
value of 0 or I, all the-possible variants involved are contained in tht
following table:

a 1 1 1 10 _

0 0 0
b 1 1 0 0 1 1 0 0
c 1 0 1 0 1 .0 1 0
s 1 0 0 1 0 1 1 0
t 1 1 1 0 1 0 0 0

Thus, so that a computer can add two numbers written in the binary
system, for every place there must exist an apparatus having three
inputs cdrresponding to the values a, h, and r, and two outputs cone-

;sponding to the values s and t. Let us assume, as it usually occurs in
electronic machines, that 1 is represented by the presence of current in
the given (input or output and 0 by its absence. The apparatus under
consideration, called a single-digit adder, should work in an analogotis
wdy with the table above, .that is, so that if there is no current in any of
the three inputs, there will be none in either of fhe outputs; if there is
current in a, but not in b or c, there should be current in s and none in 1,
and so on. An apparatus working by this scheme is not hard to Con-
struct using vacuum tubes or transistors.

14. One Remarkable Property of the Ternary System

In any evaluation of the "convenience" of a given number system, at
least two criteria come into play: thc simplicity of arithmetic computa-
tion in the system, and what.is referred to as the "economy" of the

5. We speak here of the ordinary arithmetic addition and not the addition
modulo 2 mentioned in section 11, in connection with a coded text. However,
addition modulo 2 also has an essential place in the operation of a computer.
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system. Economy is measured by the quantity of numbers that can be
expressed in the number system with some arbitrary numbetof symbols.

Let us clarify this with an example. In order to write 1,000 numbers
(ffom 0 to 999) in the decimal system, we need 30 "symbols" (10 digits
for each place). In the binary system, we can write 2" different number's
using 30 "symbols" (since, for every binary place, we need only 2 digits,
0 and 1, and so, with 30 symbols, we can write numbers containing up to
15 binary places). But

> 1000 ;

therefore, using 15 binary places, we can write more different' numbers
than we can with three decimal places. In this sense, the binary system
is more economical than the decimal system.

But which of all the number systems is the most economical? Let us
consider the following concrete problem. Suppose we have at our dispo-
sal 60 symbols. We can separate them into 30 groups of 2 elements each,
writing any number in the binary system using no more than 30 binary
place, that is, 2' numbers. We can also divide these 60 symbols into
20 gioups of 3 elements each and, 'using the termary system, write 320
different numbers. Furthermore, by separating the 60 symbols into
groups of 4 elements each, we can apply the base 4 system and write 4" \'
numbers, and so forth. In particular, if we used the.decimal system
(that is, separating all the symbols into 6 groups of 10 elements each),
we could write 106 numbers, but if we used the 'kxagesimal (base sixty)
system, 60 symbols would allow us to write only 60 numbers. Let us
find out which of the possible systems is the most economical; that is,
which one allows us to write the greatest quantity of numbers using only
60 symbols. In other words, we are asking which of the numbers

230, 320, 415, 512, 610, 106, 126, 154, 203, 302, 60

is the largest. It can be verified by calculation that the largest number is
320 . We first show that

23° . 320 .

Since 230 = (23)10 = 810 and 1320 = (32)" 91°,' we can write our
inequality in the form

810 < 910

In this form, our result is obvious.

3
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Furthermore,

415 (22)15 7.-- 230 .

Thus, by what we have just shown,

320 > 415 .

It is easy to 17erify that the following chain of inequalities is valid.:

415 > 512 > 61° > lir > 125 > 154 > 203 > 302 > 60 .

Thus, the ternary system has turned,out to be most economical, with
the binary and base four systems neV best.

This result is in no way dependent olithe fact that we were considering
60 symbols. We chose this exaMple only because a groUp of 60 symbols
is easily divided into groups of 2, 3, 4, and SQ forth.

In the general case, if we employ a symbols and use some number x
for the,base of the number system, then we can use nix places, and the
quantity of numbers that we can write will be equal to

xl4fx

Consider this expression as a function of the variable x, takingzot only
integral but any. (fractional, iyational) positiv values.,1t is possible to
find the value of x at which the function achieves its maximum. The
function has a maximum at e, an irrational number Which is the base of
the so-called system of natural logarithms and which plays an important
role in the most diverse questions of higher mathematics.° The, number

e is ApproNimately equal to

2.718281828459045 . .

6. For the reader familiar with the elements of differential calculus, we give the
corresponding calculation. A necessary condition for a function y(x) to achieve
its maximum at a point xo is that thc derivative of the function be zero at that
point. In the given case,

y(x) = xTMIN .

The derivativels equal to

dy d= i(x) 1.1 (em x/x)
dx

n 1 nln In xi
X X X2

(1 In )en In Nix
. X

=-- n (1 In x)eIx .
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The chisest iuteger to e is 3, which serves as the base for the most,
economical number system\

The graph of the function y = (x)" x is given in figure 4. (Note,
however, that the,x- and y-axes have different scales.)

Fig. 4

ir*
The econbmy of a number system is a significant property from the

stahlpoint of its Use in computer technology. For tilis reason, although
the use of the ternary system in place of the binary system in computers
involves some difficulties in construction (one must use elements that
can exist in three rather than in two stable conditions), the ternary
system has already been tried in several existing computers.

. 15. On Infinite ISlinnber Representations

Up to this point, we have considered number system representations
only OT the integers. It is natural, however, to pass from the decimal
notation of whole numbers to' decimal representation of fractions. To
do so, we must consider not only the nonnegative powers of 10 (1, 10,
100, pnd so on), but negative powers (10 10'2, and so on), and
compose combinations in which we use these negative powers as Well as
the others. For example, thc expression 23.681 stands for

2 101 + 3100 5.10-1 + 8-10 2 4-1'10-3 .

ga

Fractions are conveniently represonted as points on aline. We take a

Setting the derivative equal to zero, wc obtain

in x = 1, that is, x = e .

Sincc the derivative dyldx is positive to the left of x e and negative to the right,
we-eaft ase-a-wel1-known theoiem of differential ealplus to show that our function_
has a maximum at that pointp

1.
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A

I LI I, I

0 1/10
1 Ai;

Fig. 5

line and choose a fixed point 0 (th-erorigin of the line), a positive direc-
tiory(to the right), ad a unit.of measure, the line segment 0 A (fig. 5).
We take the point 0 to stand for the number zero, and the point A to
stand for the number I. Having laid the segment OA tp the right of the
point 0 two, three, etc. times, we obtain points which represent the
numbers 2, 3, arid so on. In this way we can represent all the integers
on a line. To represent fractions containing tenths, hundredths, and so
on, we need only divide the segment OA into ten, one hundred, and so
forth, equal parts and use these smaller units of length. We can thus
measure off points on the line corresponding to all possible numblers of
the form

a kak - 1 411(40 b1b2 6; ;

that is, all possible finite decimal representations. In doing so, of course,
we do not obtain all the points of the line. For example, the endpoint of
a segment of the same length as a diagonal of the unit square (the square
with side 1) does not correspond to,any finite elecimal,representation,
since the ratio of the length of a square's diagonal to the length of its
side is irrational.

If we want each point of the line to correspond to some number, we
shall have to use not only finite, but infinite decimal representations.
Let us clarify the meaning of this last statement.

In order to make every point orthe line correspond to some (infinite)'
decimal representation, we proceed in the following manner. For Con-
venience, we_ shall speak only abodi a part of the whole line, the line
segment 04 our Unit interval. Let x be some point on this line seg-
ment. We divide 04 into 10 equal parts and number the parts using the
digits from 0 to 9. We denote the number of the section in which x
lies by b1. We now divide this smaller segment into la parts, numbering
these parts in the same way, and denoting the number (0 to 9) of the
smaller section by 172. We subdivide further in the same way, continuing
the process indefinitely. As a result, we obtain a sequence of digits
b1, b.,, . . h ,, which we write in the form

.b1b2. b.
and which we call the infinite decimal representation (or infinite 4ecimal
expansion) corresponding to the point x. If we break off this ex ansion
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36 On Infinite Number Representations

at some point, we get an ordinary (finite) decimll representation
.h1b2-' b, which defines the position of the point x only approxi-
mately (with an acouracy of a (10n)th part of the unit i al).

In this way, we have assigned to each number x betwg0 and 1 an
infinite decimal expahsiori. The correspondence can be extended to the
entire line, for if the number y lies between the integers n and-n + 1,
the number x = y n lies between 0 and 1 and thus has some aecimal
representation

x = .b1b2. b .
If the integer n has the decimal representation

akak _1. .aiao

then y can be written

y n + x likak -1. alao b1b2 by,'

It is not hard-to see that some uncertainty inevitably arises from this.
In particular, having divided the segmerit OA into 10 parts, we must
consider, for example, the point on the boundary between the first and
the second parts. We can consider it to be both in the first secti9n
(having number 0) and in the second (having number 1). In the first
case, continuing the process of successive divisions, *e will discover that
Ott chosen point is in the rightmost (having number 9) of all the parts
into which we divide the segment at each step, that is, we obtain the
infinite fraction

0.0999 ...,

while in thc second case the point will be in each of the sections which
have number 0, that is2yie1ding the fraction

0.1000....

Here we have obtained two infinite representations corresponding,
to one and the same point. The same thing will occur at any other
boundary point (between two segments) in any of the successive
.divisions. For example, the fractions

0.125000... and 0.124999...

represent one and the same point.
We can avoif this ambiguity by agreeing telthink consistently of

every boundarj point as belonging either to the rightmost or the leftmost
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of the partial segments which it bounds. In other words, we can elimi-
nate either all fractions consisting of "infinitely 'repeating" zeros, or alr
fractions consisting of "infinitely repea 'ng" nines.

If we introduce such a restriction e can repreSent each point of the
lint by a unique infinite' decimal ansion.

That we have successively ded the partial segments into 10 parts
is, of course, immaterial, Inite d of 10, we could have used some other
number, say 2, dividing each partial segment in half. In this way we can
represent eacffpoint of the line by an infinite sequence b1, b2, . . 6, ...
of zeros and ones, which we write in the

and call an infinite binary representation (or expansion). If we cut off
this sequence at'some place, we get the finite binary representation

p. (0.142...b.)2 ;

that is, the number

1/2 + b2. 1/22 + + b. 1123 ,

approximating the point under consideration to within a (2')th part of
the unit interval.

Infinite deciMal expansions, with which we can represent all the
points of the line, are a convenient tool in the construction of the theory
of real numbers, which it fundamental in many aspects of .higher
mathematics. However, any other type of infinite expansions (binary,
ternary, and so on),can be used with equal success.

Before concluding, let us consider lhe following instructive problem.
We take a line segment OA, divide it into three equal parts, and reject
its middle part (we consider the points of division themselves to Be
members of the middle partthat is, they are also rejected; fig. 6). We

I

(1) ) ic/74;w7w/,000sOiri

(2)1 Wg54.4 t5,4/4Wf0///qisssi K5,4%M

(3)

Fig. 6
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furiher divide each of the two remaining parts into three equal parts and
reject the center segments. After this there remain four small pieces,
from each of which we again take the middle third. We continue this
process indefinitely. How many points of the segment 0 A will remain
undeleted?

At firsrglance we might say that only the endpoints 0 and A will
remain: This conclusion is supported, it would seem, by the following
reasoning. We compute the sum of the lengths of all the segments
deleted by the above process. (We recall that we took the.length of the
entre segment 04 to be equal to 1.) At the first step we rejected a
segment of length 1/3, at the second step two segments of length 1/9,
at 'the third four segments of length 1/27, and so.on. The sum of the
lengths of all ale deleted segments is equal to

, 1/3 + 2/9'4 4/27 +

This is an infinite geometric progression with first term 1/3 and ratio 2/3.
the wellzknown formula, its sum is equal to

1/3
1 2/3

Thus, the sum of the lengths of the deleted segments is exactly equal
to the length of the original segment 0 Al

And yet the above process leavesbpsides 0 and A---an infinite
number of undeleted points:To see this, we represeht each point of the
unit segment 0 A by an infinite ternary-expansion. Each such representa-
tion consists of zeros, ones, and twos. We claim that the process of
deleting the "middle third" leaves behind exlictly those points which
correspond to ternary expansions containing no ones (composed
entirely'of zeros and twos). In the first step we deleted the middle third
of the unit interval, that is, those points which correspond to terna'ry
expansions having a one in the first place. In the second step we deleted
the middle third again, removing the expansions which have avne in the
second place, and so forth. (Here we delete those points that can be
represented by two ternary expansions if one of these expansions con-
tains a one. For example, the endpoint of the first third of the line
segment OA, the number, 1 /3, can be represented by the ternary expan,.
sions

0.1000...

at.
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and

this point we defete.) And so, the process leaves exactly those points
which correspond to ternary expansions consisting imly of zeros and
twos. But there are infinitely many such numbers! Consequently,
besides the endpoints, there will' still remain ipfinitely many Undeleted
points. Fo xample, the point that corresponds to the representation

0.020202...

(the ternary expansion of the number 1/4) will remain. The infinite
ternary representation 0.020202... actually signifies the sum of the
geometric progression

+ 2.3-4 + 2,3-6 +

which, by the formula, is equal to

2/9 2/9
1 1/9 8/9

By using the following geometric argument, we can persuade our-
selves that the point 1 /4 will not be deleted. The point 1/4 divides the
whole interval [0, 1] in a ratio of 1:3. After the removal of the segment
[1/3, 2/3], the point 1 /4 remains in the half-open interval [0, 1/3), which
it divides in a ratio of 3: I. After the second deletion it remains in the
open interval (2/9, 1 /3), which it divides in a ratio of 3:1, and so on.
At no step will the point 1/4 be removed.

Thus, it turns out that the process of deleting the "middle third"
leads to a set of points which, although it "takes up no space at all" on
the line segment (since the sum of the lengths of the deleted segments is
equal, as we have made clear, to one), contains infinitely many points.

This set of points possesses other interesting properties; however,
to study them would. requite an exposition of concepts beyond the
scope of our little book. Thus, we end hcre.
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